Topological insulator states in a honeycomb lattice of s-triazines.

نویسندگان

  • Aizhu Wang
  • Xiaoming Zhang
  • Mingwen Zhao
چکیده

Two-dimensional (2D) graphitic carbon nitride materials have been drawing increasing attentions in energy conversion, environment protection and spintronic devices. Here, based on first-principles calculations, we demonstrate that the already-synthesized honeycomb lattice of s-triazines with a chemical formula of C6N6 (g-C6N6) has topologically nontrivial electronic states characterized by px,y-orbital band structures with a topological invariant of Z2 = 1, and stronger spin-orbital coupling (SOC) than both graphene and silicene. The band gaps opened in the px,y-orbital bands due to SOC are 5.50 meV (K points) and 8.27 eV (Γ point), respectively, implying that the quantum spin Hall effect (QSHE) could be achieved in this 2D graphitic carbon nitride material at a temperature lower than 95 K. This offers a viable approach for searching for 2D Topological Insulators (TIs) in metal-free organic materials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inducing topological order in a honeycomb lattice

We explore the possibility of inducing a topological insulator phase in a honeycomb lattice lacking spin-orbit interaction using a metallic (or Fermi gas) environment. The lattice and the metallic environment interact through a density-density interaction without particle tunneling, and integrating out the metallic environment produces a honeycomb sheet with in-plane oscillating long-ranged int...

متن کامل

Competing topological and Kondo insulator phases on a honeycomb lattice.

We investigate the competition between the spin-orbit interaction of itinerant electrons and their Kondo coupling with local moments densely distributed on the honeycomb lattice. We find that the model at half-filling displays a quantum phase transition between topological and Kondo insulators at a nonzero Kondo coupling. In the Kondo-screened case, tuning the electron concentration can lead to...

متن کامل

Self-localized states in photonic topological insulators.

We propose solitons in a photonic topological insulator: self-localized wave packets forming topological edge states residing in the bulk of a nonlinear photonic topological insulator. These self-forming entities exhibit, despite being in the bulk, the property of unidirectional transport, similar to the transport their linear counterparts display on the edge of a topological insulator. In the ...

متن کامل

Strain induced topological phase transitions in monolayer honeycomb structures of group-V binary compounds.

We present first-principles calculations of electronic structures of a class of two-dimensional (2D) honeycomb structures of group-V binary compounds. Our results show these new 2D materials are stable semiconductors with direct or indirect band gaps. The band gap can be tuned by applying lattice strain. During their stretchable regime, they all exhibit metal-indirect gap semiconductor-direct g...

متن کامل

Two-dimensional Topological Crystalline Insulator Phase in Sb/Bi Planar Honeycomb with Tunable Dirac Gap

We predict planar Sb/Bi honeycomb to harbor a two-dimensional (2D) topological crystalline insulator (TCI) phase based on first-principles computations. Although buckled Sb and Bi honeycombs support 2D topological insulator (TI) phases, their structure becomes planar under tensile strain. The planar Sb/Bi honeycomb structure restores the mirror symmetry, and is shown to exhibit non-zero mirror ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanoscale

دوره 6 19  شماره 

صفحات  -

تاریخ انتشار 2014